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Abstract
This paper presents methodologies for measuring the thermal diffusivity using the difference between 
temperatures measured at two, essentially independent, locations.  A heat pulse is applied for an arbitrary 
time to one region of the sample; either the inner core or the outer wall.  Temperature changes are then 
monitored versus time.  The thermal diffusivity is calculated from the temperature difference versus time.  
No initial conditions are used directly in the final results.  

I. Introduction
The determination of the thermal diffusivity κ (or conductivity k) typically requires precise knowledge of 
the applied parameters.  Such parameters include the time at which a heat pulse was applied, the amount 
of energy added or the initial temperature increase.  The diffusivity is then obtained by matching the 
experimentally measured profile to the output of an analytical/numerical model.  The resulting diffusivity 
is sensitive to values of these applied parameters.

In most circumstances, measuring thermal diffusivities in liquids is complicated by convection that occurs 
in the sample due to the applied temperature gradient.  See [1,2] for a discussion of convective flows due to 
density gradients in a gravitational field.  In metals, which have relatively high values of κ, this convective 
contribution will typically be less than a percent.  However, for low thermal conductivity liquids, e.g., the 
II-VI semiconductors, convective heat transport may be important relative to heat conduction.  Earlier 
studies have confirmed the advantage of making such measurements in a low-gravity environment 
[3].  We plan to measure the thermal diffusivity of molten II-VI semiconductors, for which convective 
contamination in the data is expected.  Therefore, we are looking for a methodology that is efficient and 
simple for conducting measurements of thermal diffusivities in orbiting spacecraft.

In general, this paper presents a methodology for measuring the thermal diffusivity using the difference 
between the temperatures measured at two locations in cylindrical samples.  We have developed algorithms 
that allow us to use either heating of the center portion of the sample or the samples edge.  The final form 
of the equation used to calculate the thermal diffusivity is the same for either heating scheme.   For both 
heating geometries the heat pulse is applied for an arbitrary.  Temperature changes are then monitored 
versus time and the thermal diffusivity is calculated from the temperature differences only versus time.  
No initial conditions are used directly in the final result.  
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In section II-A of this paper, we describe the mathematical formulation of the problem for central region heating.  
In section II-B we briefly describe the mathematical formulation of the problem for edge heating.  Then by 
means of numerical simulations we examine the effect of variations in the heated region area and measurement 
locations (Sec. II-C and D).  Finally, in Sec. II-E we examine our analytical solution to explain why these 
effects make such a small difference in the results, considering the stringent conditions that we started with.  
Section III covers our experimental set-up and results for fine-grained graphite and boron nitride.

II. Temperature In A Cylindrical Rod: The General Problem
II-A Mathematical Formulation for Central Region Heating
We consider a perfectly insulated circular cylinder under conditions for which the temperature depends only on 
the cylindrical radius r.  The initial temperature distribution is T(r, 0) = f(r) given by

   (1)

where 0< p< 1; a is the cylinder radius, and T0 is a constant, see Fig. 1. For time t > 0, radial heat transfer begins.

The evolution of the temperature T(r, t) is then given [4] by the expression

   (2)

where µn = aαn is the nth positive root of the Bessel function of the first kind of order 1, i.e., J1(µn) = 0.  
Using the initial conditions defined above, and after several substitutions the integrals in Eq. (2) become

   (3)
 
We shall proceed to simplify the infinite sum in Eq. (3) by eliminating the n = 2 and n = 3 terms.  Since the 
terms for n > 3 decay rapidly with time, we will be left after a short transient with n = 1 term, a tractable 
expression that can be used to analyze experimental data.  Setting p, the ratio of the heated to the sample 
radius, equal to the special value µ1/µ2 = 0.5436, we can eliminate the n = 2 term of the series because
   (4)
The n = 3 term can be set to zero by choosing the temperature measurement locations r so that µ3r/a = νn 
corresponds to the first three zeros of J0, i.e., J0(νn) = 0, which are 2.4048, 5.5201 and 8.6537, respectively.  With 
µ3 = 10.17347, this results in three special values of r given by r1/a = ν1/µ3 = 0.2364, r2/a = ν2/µ3 = 0.5426, and ν3/
µ3 = ν3/µ3 = 0.8506.  The next zero of J0 is at ν4 = 11.792 and would result in a value r4/a > 1, outside the sample.

The geometry of the heated area and the three special values of r (temperature measurement locations for 
the experiments) are shown in Fig. 1.  With the n = 2 and n = 3 terms set to zero by means of the choices 
adopted above, the temperature at each ri is,

   (5)

where h.o.t. stands for higher order terms having n > 3.

Taking the difference between two locations, for example between r1 and r3,
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It can be shown that the difference between the higher order terms in Eq. (6) is less than 1% of the n = 1 
term for κt/a2 > 0.015.  This corresponds to a time greater than 3.7 s for a = 5 cm and κ = 0.1 cm2/s.  The 
effects of this condition will be discussed in section II-C. Neglecting such high order terms, and taking the 
natural logarithms of the differences ∆Tij = T(ri, t) – T(rj, t), we obtain

   (7)
where 

   (8)

Details of all of the initial conditions, including the initial applied temperature T0, are contained in βij. 
Therefore, the slope of a plot of ln(∆Ti) versus t is independent of the details of the initial conditions and 
is proportional to the value of κ, with a known proportionality constant.

The values of thermal diffusivity are obtained from the slopes of the curves of ln(∆Tij) as a function of 
time, as shown in Fig. 2.  Note that the resulting diffusivity depends only on the slope of the curve, i.e., we 
have met the requirement that no knowledge of initial conditions are necessary for the final analysis.
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Fig. 1  Plan view of the sample showing the positions of the heated region and temperature measurement 
locations for central heated region.
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Fig. 2  Temperature profiles and values of ln(∆Tij) versus time, generated numerically by using the 
special heated region and measurement locations.  The thermal diffusivity was 0.1 cm2/sec. Ti is the 

temperature at special measurement location ri.
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II-B Mathematical Formulation for Outside Edge Heating
In a similar vein to the final equation derived above for central region heating we arrive at a similar 
equation for edge heating.  We again consider a perfectly insulated cylinder under conditions for which 
the temperature depends only on the radius r.  The initial conditions are, initial temperature T0 throughout 
the cylinder and, a heat flux Q” is applied to the surface for a time 0 ≤ t ≤ te.  The heat flux initial condition 
(at r= R) is expressed as:
    (9)

where the function h is the Unit Step or Heaviside function, and K the thermal conductivity.

The evolution of the temperature as a function of position and time T(r,t) is obtained by solving the 
transient form of the heat equation in cylindrical coordinates.

    (10)
The solution is:

    (11)

where αs are the positive roots of J1(α) = 0.  [Caslaw and Jeager, Conduction of Heat in Solids, 2nd edition, 
p 329]  Taking the result from Carslaw and Jaeger, it is important to note, that their initial condition is T0 
= 0. To have a more general case, the initial value T0 of the temperature is added to this result.

The presence of the Heaviside function in the solution, divides this problem into two cases, one for t ≤ te 
during the heating, and one for t > te  after the pulse is turned off. 

We are interesting in the cooling phase only which yields for the temperature distribution:

    (12)

Only the n=2 term can be set to zero, by choosing the temperature measurement locations ri, in this heating 
geometry.   This is done by setting the rα2 / R = vn terms to the first two zeros of J0,  or  at  J0(vn) = 0  at    
vn =  2.4048 and  5.5201.   With  α2 = 7.01559 the measurement locations are then set at 
      . 

Other terms cannot be so eliminated, however, terms for n ≤ 3 decay rapidly with time in comparison to 
the first two terms.  Grouping the n ≤ 3 terms together as higher order terms yields  

    (13)
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Taking the temperature difference between two locations, Ti and Tj:

     
    (14)

This reduces to:

    (15)

Then taking the natural logarithm of the difference we arrive at a solution analogous to equation (7) 
above:
    (16)

Thus, for either heating geometry we arrive at a solution where only the measured temperature difference 
versus time is required to calculate the thermal diffusivity.

II-C Modification of the Heated Region-Central Region Heating
We investigate the effect of varying the size of the heated region on the output diffusivity.  Initially, this 
work was intended to see how much error could be tolerated in the heated area; recall that our derivation 
is based on a special value p = 0.546, leading to elimination of the n = 2 term in Eq. (5).  Here again, we 
show the results for κ = 0.1 cm2/sec; the results for the other values of κ follow with linear time scaling.  
The sample radius for these cases was 5 cm, so the special value of p corresponds with a radius of the 
heated region of 2.73 cm. Two, extreme, cases are shown here; 1) when the heated region is increased to 
125% of the special radius, and 2) decreased to 20%.  Thus, the radii of the heated regions considered here 
are 3.41,and 0.556 cm, respectively.  

The temperature increase at equilibrium is given by T0 p
2.  Therefore, for an initial temperature of 20 K, 

the final temperature increases for the exact solution and the two modified cases are expected to be 6.0, 
9.3 (125%), and 0.2oC (20%), respectively.  The effect of these values on the experimental diffusivity was 
mentioned before and will be further discussed below.

Figs. 3a, and 4a show a plot of the temperature versus time at the three measurement locations for the 
modified heated radii (125%, and 20% respectively).  These can be compared with Fig. 2 which shows 
the temperature versus time for the heated region of special radius.  The effect of changing the size of the 
heated region on the measured temperature at r2 is obvious in Figs. 3a, 4a.  Note that for the 0.5 cm heated 
region (20% of the special p value) the initial T0 is not seen in the plot since there is no measurement 
location within this area, Fig. 4a.  This change follows what would be intuitively expected, i.e., for the 
larger heated region, T(r2, t) is higher, while it is lower for the 20% case (i.e., p = 0.11 case).  Note that the 
approximate time to reach equilibrium is not changed.

The corresponding plots of ln(∆T) versus time are shown in Figs. 3b, and 4b.  Comparing Fig. 2a (special 
p), at the shorter times, with the modified cases shows the effect of the n = 2 term being non-zero on the 
development of the curve.  In Fig. 2b the plot of ln(∆T) versus time  becomes linear after about t > 5 sec.  
In Fig. 3b, and 4b, it is not until about 10 seconds that the plots become linear and the input diffusivity is 
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recovered.  For the 125 % case, the time period over which the plot is linear is approximately the same as 
for the special p case and corresponds to the original diffusivity value to within 1%.

Fig. 3  Temperature profiles and values of ln(∆Tij) versus time, generated numerically by using a heated 
radius 125% larger than the special value and the special measurement locations with no noise.  Notice the 
increase in the temperatures versus time compared to Fig. 2.  Figure (b) shows that longer time is required 

before the diffusivity can be extracted due to the fact that r2 is no longer at the edge of the boundary 
between the heated and unheated regions.
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Fig. 4  Temperature profiles and values of ln(∆Tij)’s versus time generated numerically by using a heated 
region of size 20% of special value and the special measurement locations with no noise.  Note the very 
small increase in T1 since the heated region is inside this measurement location.  Due to the low values 

of ∆T the thermal diffusivity can only be extracted from ln(∆T13).
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II-D Variations in Measurement Locations
The effect of variations in the measurement locations is essentially the same as that for modifications in 
the heated region, i.e., at long enough times the effect is negligible.  This can be seen from Fig. 5a and 5b. 
Fig. 5 shows the evolution of the temperature profile and ln(∆T) versus time for r1, r2 and r3 of 0.1, 2.5 and, 
4.9 cm, (the special ri values are 1.182, 2.71 and 4.253 cm for a = 5.0 cm).  As in the above cases, after 10 

Fig. 5  Temperature profiles and values of ln(∆Tij)’s versus time generated numerically by using a heated 
region of the special size and the modified measurement locations.  T1 and T3 are inside and outside the 

correct positions.  (b) Longer time is require before the diffusivity can be extracted.  
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seconds the original diffusivity values are returned.  The difference in the temperature profiles at r1, r2 and 
r3 between a solution containing 20 terms and a solution containing the constant term T0p

2 and the n = 1 
term is less than 0.01 % for values of the non-dimensional coefficient κt/a2 greater or equal than 0.04.

Conclusions
We have developed  novel methodology(ies) for measuring thermal diffusivities.  This methodology does 
not require knowing the initial temperature increase or any timing between the applied and measured 
response.  We have shown by numerical simulation that a relative imposed error up to 10% can be 
tolerated.  We have proven that it is possible to extract an accurate value of thermal diffusivity when the 
heated region is reduced up to 20% of the special value needed to simplify the analytical series solution.  
Increasing the initial temperature and using modified measurement locations is helpful.  Finally, by scaling 
analysis we have a measure of the time when the thermal diffusivity values are reliable.
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